ggplot#
New in version 0.7:
pip install jupysql --upgrade
Note
ggplot
API requires matplotlib
: pip install matplotlib
The ggplot
API is structured around the principles of the grammar of graphics, and allows you to build any graph using the same components: a data set, a coordinate system, and geoms (geometric objects).
To make it suitble for JupySQL, specifically for the purpose of running SQL and plotting larger-than-memory datasets on any laptop, we made a small modification from the original ggplot2
API. Rather than providing a dataset, we now provide a SQL table name.
Other than that, at this point we support:
Aes:
x
- a SQL column mappingcolor
andfill
to apply edgecolor and fill colors to plot shapes
Geoms:
geom_boxplot
geom_histogram
Facet:
facet_wrap
to display multiple plots in 1 layout
Please note that each geom has its own unique attributes, e.g: number of bins in geom_histogram
. We’ll cover all the possible parameters in this tutorial.
Building a graph#
To build a graph, we first should initialize a ggplot
instance with a reference to our SQL table using the table
parameter, and a mapping object.
Here’s is the complete template to build any graph.
(
ggplot(table='sql_table_name', mapping=aes(x='table_column_name'))
+
geom_func() # geom_histogram or geom_boxplot (required)
+
facet_func() # facet_wrap (optional)
)
Note
Please note this is the 1st release of ggplot
API. We highly encourage you to provide us with your feedback through our Slack channel to assist us in improving the API and addressing any issues as soon as possible.
Examples#
First, establish the connection, import necessary functions and prepare the data.
Setup#
%load_ext sql
%sql duckdb://
from sql.ggplot import ggplot, aes, geom_boxplot, geom_histogram, facet_wrap
from pathlib import Path
from urllib.request import urlretrieve
url = "https://d37ci6vzurychx.cloudfront.net/trip-data/yellow_tripdata_2021-01.parquet"
if not Path("yellow_tripdata_2021-01.parquet").is_file():
urlretrieve(url, "yellow_tripdata_2021-01.parquet")
Boxplot#
(ggplot("yellow_tripdata_2021-01.parquet", aes(x="trip_distance")) + geom_boxplot())
<sql.ggplot.ggplot.ggplot at 0x7f7de2f5df30>

Histogram#
To make it more interesting, let’s create a query that filters by the 90th percentile. Note that we’re using the --save
, and --no-execute
functions. This tells JupySQL to store the query, but skips execution. We’ll reference it in our next plotting calls using the with_
parameter.
%%sql --save short_trips --no-execute
select * from 'yellow_tripdata_2021-01.parquet'
WHERE trip_distance < 6.3
* duckdb://
Skipping execution...
(
ggplot(table="short_trips", with_="short_trips", mapping=aes(x="trip_distance"))
+ geom_histogram(bins=10)
)
<sql.ggplot.ggplot.ggplot at 0x7f7de2e5b820>

Custom Style#
By modifying the fill
and color
attributes, we can apply our custom style
(
ggplot(
table="short_trips",
with_="short_trips",
mapping=aes(x="trip_distance", fill="#69f0ae", color="#fff"),
)
+ geom_histogram(bins=10)
)
<sql.ggplot.ggplot.ggplot at 0x7f7dd92cef80>

When using multiple columns we can apply color on each column
(
ggplot(
table="short_trips",
with_="short_trips",
mapping=aes(
x=["PULocationID", "DOLocationID"],
fill=["#d500f9", "#fb8c00"],
color="white",
),
)
+ geom_histogram(bins=10)
)
<sql.ggplot.ggplot.ggplot at 0x7f7dd92abbe0>

Categorical histogram#
To make it easier to demonstrate, let’s use ggplot2
diamonds dataset.
from pathlib import Path
from urllib.request import urlretrieve
if not Path("diamonds.csv").is_file():
urlretrieve(
"https://raw.githubusercontent.com/tidyverse/ggplot2/main/data-raw/diamonds.csv", # noqa
"diamonds.csv",
)
%%sql
CREATE TABLE diamonds AS SELECT * FROM diamonds.csv
* duckdb://
Done.
Count |
---|
53940 |
Now, let’s create a histogram of the different cuts of the diamonds by setting x='cut'
.
Please note, since the values of cut
are strings, we don’t need the bins
attribute here.
(ggplot("diamonds", aes(x="cut")) + geom_histogram())
<sql.ggplot.ggplot.ggplot at 0x7f7dd9c1da20>

We can show a histogram of multiple columns by setting x=['cut', 'color']
(ggplot("diamonds", aes(x=["cut", "color"])) + geom_histogram())
<sql.ggplot.ggplot.ggplot at 0x7f7dd9c85fc0>

Apply a custom color with color
and fill
(
ggplot("diamonds", aes(x="price", fill="green", color="white"))
+ geom_histogram(bins=10, fill="cut")
)
<sql.ggplot.ggplot.ggplot at 0x7f7dd915feb0>

If we map the fill
attribute to a different variable such as cut
, the bars will stack automatically. Each colored rectangle on the stacked bars will represent a unique combination of price
and cut
.
(ggplot("diamonds", aes(x="price")) + geom_histogram(bins=10, fill="cut"))
<sql.ggplot.ggplot.ggplot at 0x7f7dd839d5d0>

We can apply a different coloring using cmap
(
ggplot("diamonds", aes(x="price"))
+ geom_histogram(bins=10, fill="cut", cmap="plasma")
)
<sql.ggplot.ggplot.ggplot at 0x7f7dd83313c0>

Facet wrap#
facet_wrap()
arranges a sequence of panels into a 2D grid, which is beneficial when dealing with a single variable that has multiple levels, and you want to arrange the plots in a more space efficient manner.
Let’s see an example of how we can arrange the diamonds price
histogram for each different color
(ggplot("diamonds", aes(x="price")) + geom_histogram(bins=10) + facet_wrap("color"))
<sql.ggplot.ggplot.ggplot at 0x7f7dd83126e0>

We can even examine the stacked histogram of price
by cut
, for each different color
.
Let’s also hide legend with legend=False
to see each plot clearly.
(
ggplot("diamonds", aes(x="price"))
+ geom_histogram(bins=10, fill="cut")
+ facet_wrap("color", legend=False)
)
<sql.ggplot.ggplot.ggplot at 0x7f7dd91b92a0>
